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Abstract—Because of its accuracy, pattern matching 

technique has recently been applied to Internet security 

applications such as intrusion detection/prevention, anti-virus, 

and anti-malware.  Among various famous pattern matching 

algorithms, the Aho-Corasick (AC) can match multiple pattern 

strings simultaneously with worst-case performance guarantee 

and is adopted in both Clam AntiVirus (ClamAV) and Snort 

intrusion detection open sources.  The AC algorithm is based on 

finite automaton which can be implemented straightforwardly 

with a two-dimensional state transition table.  However, the 

memory requirement prohibits such an implementation when the 

total length of the pattern strings is large.  The ClamAV 

implementation limits the depth of the finite automaton and 

combines with linked lists to reduce memory requirement.  The 

banded-row format is adopted to compress the state transition 

table and used as an alternative pattern matching machine in 

Snort.  In this paper we present a novel implementation which 

requires small memory space and achieves high throughput 

performance.  Compared with the banded-row format, our 

proposed scheme achieves 39.7% reduction in memory 

requirement for 5,000 patterns randomly selected from ClamAV 

signatures.  Besides, the processing time of our proposed 

scheme is, on the average, 83.9% of that of the banded-row 

format for scanning various types of files.  Compared with the 

ClamAV implementation with the same 5,000 patterns and files, 

our proposed scheme requires slightly more memory space but 

achieves 80.6% reduction in processing time on the average. 

I.  INTRODUCTION 

Pattern matching has been an important technique in 

information retrieval and text editing for many years.  

Recently, it has been applied to Internet security for signature 

matching to detect virus, worms, intrusion, etc., because of its 

accuracy. 

There are some well-known pattern matching algorithms 

such as Knuth-Morris-Pratt (KMP) [1], Boyer-Moore (BM) 

[2], and Aho-Corasick (AC) [3].  The KMP and BM 
algorithms are efficient for single pattern matching but are not 

scalable for multiple patterns.  The AC algorithm 

pre-processes the patterns and builds a finite automaton which 

can match multiple patterns simultaneously.  Another 

advantage of the AC algorithm is that it guarantees 

deterministic performance under all circumstances.  It can be 

shown that the number of state transitions is at most 2n-1 for 

an input text string of length n.  In fact, this number can be 

reduced to n if the next move function is adopted.  As a 

consequence, the AC algorithm is widely adopted in various 

systems, especially when worst-case performance is an 

important design factor. 

A straightforward implementation of the AC algorithm is 
to construct a two-dimensional state transition table for the 

finite automaton.  However, the huge amount of memory 

space required makes such an implementation infeasible.  As 

an example, assume that a pattern set results in 1M states and 

each state is represented with four bytes.  If every symbol is 

a byte, meaning that the number of possible inputs is 
8

2 , then 
the total memory requirement is about 1G bytes which is 

obviously not acceptable for an embedded system.  Several 

schemes had been proposed to reduce the memory 

requirement.  The bitmap architecture presented in [4] can 

significantly compress the data structure.  However, it 

requires to compute the population count in a 256-bit bitmap 

and thus may seriously degrade the throughput performance 

unless hardware acceleration is adopted.  The banded-row 

format [5] proposed by Marc Norton, the Snort IDS Team 
lead at Sourcefire Inc., can compress the state transition table 

significantly.  For convenience, the banded-row format based 

implementation of the AC algorithm will be referred to as the 

banded-row format AC.  In Clam AntiVirus (ClamAV) [6] 

implementation, two data structures, i.e., AC automaton and 

linked lists, are used to reduce memory requirement.  The 

AC automaton is constructed only for the first two bytes of all 

pattern strings.  Pattern strings which have the same first two 

bytes form a linked list associated with some leaf state of the 

AC automaton.  As will be seen later in Section VI, such an 

implementation largely reduces memory requirement but 
sacrifices throughput performance.  Both the banded-row 

format and the ClamAV implementation will be reviewed in 

Section III.

In this paper, we first present an idea to improve the 

throughput performance of the banded-row format AC and 

then propose another scheme which can further improve 

throughput performance and reduce memory requirement.  

Compared with the banded-row format AC, our proposed 

scheme achieves 39.7% reduction in memory requirement for 

5,000 patterns randomly selected from ClamAV signatures.  

Besides, the processing time of our proposed scheme is, on 

the average, 83.9% of that of the banded-row format AC for 
scanning various types of files.  Compared with the ClamAV 

implementation with the same 5,000 patterns and files, our 

proposed scheme requires slightly more memory space but 

achieves 80.6% reduction in processing time on the average. 
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The rest of this paper is organized as follows.  In 

Sections II and III, we review the AC algorithm and some 

related works, respectively.  Section IV presents our idea 

which improves the throughput performance of the 

banded-row format AC.  Section V contains our proposed 

scheme, followed by the complexity analysis and 
experimental results in Section VI.  Finally, we draw 

conclusion in Section VII.  

II.  THE AHO-CORASICK ALGORITHM 

In this section, we briefly review the AC algorithm of 

constructing a finite state pattern matching machine for a 

given set of pattern strings Y = { 1 2, ,..., yp p p }.  Basically, 

the AC pattern matching machine is dictated by three 

functions: a goto function g, a failure function f, and an output 

function output.  Fig. 1 shows the pattern matching machine 

for Y = {he, she, his, hers} [3]. 

One state, numbered 0, is designated as the start state.  

The goto function g maps a pair (state, input symbol) into a 

state or the message fail.  For the example shown in Fig. 1, 

we have g(0, h) = 1 and g(1,σ ) = fail if σ  is not e or i.

State 0 is a special state which never results in the fail 

message, i.e., g(0, σ ) ≠ fail for all input symbols σ .

With this property, one input symbol is processed by the 

pattern matching machine in every operation cycle. 

The failure function f maps a state into a state and is 

consulted when the outcome of the goto function is the fail
message.  String u is said to represent state S if the shortest 

path in the goto graph from state 0 to state S spells out u.

Let u and v be the strings that represent states S and Q,

respectively.  We have f(S) = Q if and only if (iff) v is the 
longest proper suffix of u that is also a prefix of some pattern 

string.  It is not difficult to verify that f(5) = 2 for the 

example shown in Fig. 1.  The output function maps a state 

(a) The goto function. 

S 1 2 3 4 5 6 7 8 9 

f(S) 0 0 0 1 2 0 3 0 3 

(b) The failure function. 

S output(S)

2 {he}

5 {she, he}

7 {his}

9 {hers}

(c) The output function. 

Figure 1. The AC pattern matching machine for Y = {he, she, his, hers}. 

into a set (could be empty) of pattern strings.  The set 

output(S) contains pattern string p iff p is a suffix of the string 

representing state S.  As an example, we have output(5) = 

{he, she} for the example shown in Fig. 1. 

The operation of a pattern matching machine is as follows.  

Let S be the current state and a the current input symbol.  
Also, let T denote the input text string.  An operation cycle is 

defined as follows. 

1. If g(S, a) = Q, the machine makes a state transition 

such that state Q becomes the current state and the next 

symbol of T becomes the current input symbol.  If 

output(Q) ∅  (empty set), the machine emits the set 

output(Q).  The operation cycle is complete. 

2. If g(S, a) = fail, the machine makes a failure 

transition by consulting the failure function f.  Assume 

that f(S) = R.  The pattern matching machine repeats the 

cycle with R as the current state and a as the current input 

symbol. 

Initially, the start state is assigned as the current state and 

the first symbol of T is the current input symbol. 

It was proved that the pattern matching machine makes at 

most 2n-1 state transitions in processing an input text string of 

length n.  This is an important property because it provides 

performance guarantee in the worst case.  Notice that failure 

transitions can be eliminated if the goto function is replaced 

with the next move function so that the pattern matching 

machine becomes a deterministic finite automaton.  In this 

case, the number of state transitions is exactly n when an 

input text string of length n is processed.

III.  RELATED WORKS 

It is clear that, in an AC pattern matching machine, the 

goto function requires much more storage than the failure and 

the output functions.  A straightforward implementation of 

the goto function is to use a two-dimensional state transition 

table.  However, the memory requirement for such an 

implementation may become prohibitively large when the 

total length of the pattern strings is large.  Two related 

compression schemes which are used in Snort and ClamAV 

are briefly reviewed below. 

A. Banded-row format 

The state transition table of the goto function in the AC 

pattern matching machine is often a sparse matrix because it 

is likely to contain only a few nonfail elements in each row.  

There are various compression schemes to reduce the memory 

requirement of a sparse matrix [5], [7].  The banded-row 
format [5] proposed by Marc Norton, the Snort IDS Team 

lead at Sourcefire Inc., is an effective compression scheme 

which allows fast random access to the data. 

For the banded-row format, the row elements are stored 

from the first nonzero value (or nonfail value in the goto 

transition table of AC pattern matching machine) to the last 

nonzero value, known as band values.  For example, the 
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banded-row format of the sparse vector (0 0 0 2 4 0 0 0 6 0 7 

0 0 0 0 0 0 0 0 0) is (8 3 2 4 0 0 0 6 0 7), where the first 

element indicates the number of vector elements stored, 

named bandwidth, and the second element represents the 

index (numbered from 0) of the first vector element stored 

followed by band values.  Both the goto table and the next 
move table of AC pattern matching machine can be 

compressed with the banded-row format.  However, the next 

move table is not as sparse as the goto table, so we choose the 

goto table.  The corresponding pattern matching scheme is 

referred to as the banded-row format AC, as mentioned 

before. 

Obviously, the banded-row format can be generalized to 

multiple bands.  As an example, the two-band banded-row 

format of the above sparse vector is (2 3 2 4)(3 8 6 0 7), 

where (2 3 2 4) and (3 8 6 0 7) denote the first and the second 

bands, respectively.  The elements of the two bands have 

similar meanings as those in the original banded-row format.  
Our experiments show that one band is a better choice than 

multiple bands because there is no significant difference in 

terms of the reduction of memory requirement and multiple 

bands yield worse throughput performance than one band 

because it needs to distinguish more cases. 

B. ClamAV 

ClamAV [6] is an open source anti-virus toolkit for UNIX.  

The main purpose of it is e-mail scanning on mail gateways.  

It is the most widely used open source anti-virus scanner 

available.   

ClamAV uses a variation of the AC algorithm.  To look 

up each input symbol quickly, ClamAV constructs a trie 

structure with a 256-element lookup array for each 8-bit 

symbol.  The memory requirement of ClamAV depends on 

how deep the trie is.  Since the AC algorithm constructs an 

automaton of depth equal to the longest pattern length, the 

memory requirement of ClamAV’s structure would be 
unacceptably large because some patterns are of length more 

than 2,000 bytes.  Therefore, ClamAV modifies the AC 

algorithm so that the trie is constructed only to some 

maximum depth, and all patterns with the same prefix are 

stored in a linked list under the appropriate leaf state.  The 

maximum depth is dictated by the shortest pattern length, 

which is currently two bytes.  Fig. 2 shows the ClamAV trie 

structure. 

ClamAV follows the trie transition to process each input 

symbol.  When a leaf state is visited, all patterns on its 

linked list are checked using sequential string comparisons.  
As a result, the throughput performance of ClamAV may 

severely degrade if a leaf state with a linked list containing a 

large number of patterns is visited.  

IV.  IMPROVING THE BANDED-ROW FORMAT AC 

As described in Section III, the transition table of the 
banded-row format AC is a compressed version of the goto 

table.  Thus, some band values may be fail.  To speed up 

matching procedure, we replace all band values with the 

Figure 2. The ClamAV trie structure. 

results of the next move function, so that no failure transition 
is necessary if the input symbol falls in a band.  As an 

example, assume that alphabet  = {a, b, c, d, e, f, g, h} and Y
= {abcda, abba, cda, cabc}.  Assume further that the 

symbols in  are sequentially encoded as 0, 1, 2, 3, 4, 5, 6 and 

7.  For clearness, the original goto graph is shown in Fig. 3.  

The goto transition vector for state 8 is  (11 fail fail 9 fail fail
fail fail) and, therefore, its corresponding banded-row format 

is given by (4 0 11 fail fail 9).  Since the two symbols b and 

c which result in fail fall in the band, their transitions are 

replaced with the results of the next move function.  The 

goto transitions for the two symbols a and d, which also fall in 

the band, are the same as their next move transitions.  As a 
consequence, the transition vector stored for state 8 is (4 0 11 

0 8 9).  With this replacement, the number of failure 

transitions during text scanning can be reduced and, thus, the 

throughput performance improves. 

V.  OUR PROPOSED SCHEME 

In our proposed compression scheme, we classify states 

according to the number of child states and whether or not 

pattern strings are matched.  Note that there might be a 

self-loop at the start state.  However, the goto graph becomes 
a tree after removing the self-loop, if exists.  In the following 

definitions, we ignore the self-loop and consider the goto 

graph as a tree. 

State R is said to be a child state of state S if there exists a 

Figure 3. The goto function for  = {a, b, c, d, e, f, g, h} and Y = {abcda,

abba, cda, cabc}. 

3

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 29, 2009 at 19:53 from IEEE Xplore.  Restrictions apply.



symbol σ  such that g(S,σ ) = R.  State S is said to be a 

branch state, a single-child state, or a leaf state, if it has at 

least two child states, exactly one child state, or no child state, 

respectively.  Moreover, state S is said to be a final state if 

output(S) is not empty.  It is clear that a leaf state is always a 

final state but not the converse.  Finally, state S is said to be 

an explicit state if it is a branch state or a final state. 

We store all pattern strings and some data structures for 

the states on the goto graph.  The data structures for branch, 

single-child, and leaf states are different.  Assume that state 

S is a branch state.  In this case, we store f(S) and g(S,σ ) for 

all possible input symbols σ .  As a result, we also have a 

two-dimensional state transition table.  However, the number 

of rows is only equal to the number of branch states.  It is not 

hard to see that the number of branch states is at most y-1 if 

there are y pattern strings.  To save space, the banded-row 

format is adopted to compress the two-dimensional table.  To 

speed up matching procedure, we adopt the idea proposed in 

Section IV.  For convenience, the resulting state transition 

table is named the Branch State Transition (BST) table. 

Assume that state S is a single-child state.  We say state 

R is a descendent state of state S if state R is a child state of 

state S or a descendent state of some child state of state S.  In 
other words, state R is a descendent state of state S if there 

exist strings u and v such that u represents state S and uv
(concatenation of u and v) represents state R for some 

nonempty string v.  Furthermore, state R is said to be a 

descendent explicit state of state S if R is an explicit state and 

a descendent state of state S.  Note that, based on our 

definition, state R is different from state S if state R is a 

descendent explicit state of state S.  State R is said to be the 

nearest descendent explicit state (NDES) of state S if state R is 

a descendent explicit state of state S and there is no other 

descendent explicit state of state S which is represented by 
string uw where string w is a proper prefix of string v.

Suppose that state R is the NDES of state S.  It is true that 

there exists at least one pattern string kp  such that 

kp = uvr for some string r.  The data structure for the 

single-child state S includes S.pattern, S.position, S.distance, 

and f(S), where S.pattern, S.position, and S.distance store, 

respectively, the identification of pattern string kp , |u|

(length of string u), and |v|.  Note that, if states are numbered 

sequentially from a single-child state to its NDES, then the 

state number of state S.NDES is that of state S plus S.distance.  

In our realization, we use such a numbering scheme as in the 

original AC algorithm. 

Finally, assume that state S is a leaf state.  In this case, 

we simply store f(S).  Of course, every state needs a flag to 

indicate whether or not it is a final state and, if it is, another 
data structure is necessary to emit the matched pattern strings.   

Consider the example in Section IV again.  There are 

only three branch states, namely states 0, 2, and 8.  The 

vector representing goto transitions for state 0 is (1 0 8 0 0 0 0 

0) and it is stored as (8 0 1 0 8 0 0 0 0 0) in our scheme.  

Similarly, the goto transitions for state 2 is (fail 6 3 fail fail 
fail fail fail) and is stored as (2 1 6 3).  Finally, the goto 

transitions for state 8 is (11 fail fail 9 fail fail fail fail) and we 

store it as (4 0 11 0 8 9).  

Assume that the pattern strings abcda, abba, cda, and 

cabc are identified by numbers, 0, 1, 2, and 3, respectively.  

State 1 is an example of single-child state.  Its NDES is state 

2 with distance 1.  Let S be state 1.  There are two pattern 
strings, i.e., abcda and abba, which can be used as S.pattern.  

In our example, we picked pattern string abcda with 

identification 0.  The data structures for the other 

single-child states can be obtained similarly.  Fig. 4 shows 

the data structures of our proposed scheme for this example.  

Our proposed pattern matching machine is described 

below.  For convenience, we use [ ]kp m  to represent the 

thm  symbol of pattern string kp  and assume input text 

string T = 1 2... nt t t .  Note that, since the states from a 

single-child state to its NDES are numbered sequentially, the 

updated current state after each success transition from a 

single-child state to its NDES can be easily obtained by 

increasing the current state number by one. 

Pattern Matching Machine 

S ← 0;  i ← 1;  // initialization 

While (i ≤ n)

{

If (S is a branch state) 
{

If (BST[S][1] it  BST[S][1]+ BST[S][0]-1) 

{

S ← BST[S][2+ it - BST[S][1]]; 

  If (output(S) ≠ ∅ )

emit output(S); 

i ← i+1; 

}

Else  

S ← f(S); 

}

Else if (S is a single-child state) 

{

kp ← S.pattern;  m← S.position+1;  St ← S;

While (m  St.position+ St.distance) 

{

If ( it = [ ]kp m ) {S ← S+1;  i ← i+1;

m ← m+1;} 

 Else {S ← f(S);  break;}

}

If (m= St.position+ St.distance+1) 

  If (output(S) ≠ ∅ )

emit output(S); 

}

Else  // S is a leaf state 

S ← f(S); 

}
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Branch 

state 

Band-

width 

Start 

index 
Band values

0 8 0 1 0 8 0 0 0 0 0 

2 2 1 6 3       

8 4 0 11 0 8 9     

(a) The Branch State Transition (BST) table. 

S S.pattern S.position S.distance 

1: 0 1 1 

3: 0 3 2 

4: 0 4 1 

6: 1 3 1 

9: 2 2 1 

11: 3 2 2 

12: 3 3 1 

(b) Data structure for single-child states. 

S 1 2 3 4 5 6 7 8 9 10 11 12 13 

f(S) 0 0 8 9 10 0 1 0 0 1 1 2 3 

(c) The failure function. 

S output(S)

5 {0, 2} 

7 {1} 

10 {2} 

13 {3} 

others ∅

(d) The output function. 

Figure 4. Data structures of our proposed scheme for  = {a, b, c, d, e, f, g,

h} and Y = {abcda, abba, cda, cabc}.

VI.  ANALYSIS AND EXPERIMENTAL RESULTS 

In this section, we compare the memory requirement and 
processing time of the AC algorithm, the ClamAV scheme, the 

banded-row format AC, our modified version, and our 

proposed scheme.   

Firstly, let us consider the AC algorithm.  We name the 

AC pattern matching machine dictated by a goto function, a 

failure function, and an output function AC 1.  As mentioned 

in Section II, we can eliminate the failure function by 

replacing the goto function with the next move function, and 

we name this version AC 2.   Both the goto function and the 

next move function can be realized with two-dimensional 

tables of O(L| |) elements straightforwardly, where L
represents the total length of all pattern strings, which is the 
upper bound of the state number.  To realize the failure and 

the output functions, we need some data structures which both 

take space O(L).  Therefore, the space complexity of AC 1 

and AC 2 is O(L| |).  With the next move function, AC 2 

makes exactly n state transitions in processing an input text 

string of length n.  On the other hand, AC 1 needs at least n
and at most 2n-1 transitions.  Therefore, the time complexity 

of both AC 1 and AC 2 is O(n), but actually AC 2 is normally 

faster than AC 1.   

Secondly, consider the ClamAV scheme.  ClamAV uses a 

trie structure of depth two as shown in Fig. 2 to perform 

pattern matching.  On the first level of the trie, there is a 

| |-element lookup array.  Each element on the array may 

point to a second-level lookup array, which also contains | |

elements.  All pattern strings should be grouped according to 

their 2-byte prefix and stored under the appropriate leaf state.  

Therefore, the space complexity of ClamAV is O(| |
2+L). 

Thirdly, consider the banded-row format AC and our 

modification described in Section IV.  In both schemes, the 

goto tables are compressed with the banded-row format.  

The only difference is that all band values are replaced with 

the results of the next move function in our modification.  

Therefore, the space complexity of both schemes is O(LB), 

where B denotes the average bandwidth. 

Finally, consider our proposed scheme presented in 

Section V.  Since the number of branch states is at most y-1, 

the BST table takes space O(yB).  As mentioned above, L is 

the upper bound of the number of all states, so the number of 

single-child states is not greater than L.  Therefore, the data 
structure for single-child states takes space O(L) as all pattern 

strings and the data structures for the failure function and the 

output function take.  Consequently, the space complexity of 

our proposed scheme is O(yB+ L). 

In addition to theoretical analysis, we conduct practical 

experiments to compare all of these schemes.  All schemes 

are implemented in C++ and the experiments are conducted 

on a PC with an Intel Pentium 4 CPU operated at 2.80GHz 

with 512MB of RAM.  The pattern strings are 5,000 

randomly selected ClamAV signatures.  Fig. 5 shows the 

results of the experiments for memory requirement.  Table I 
shows the processing time for each scheme applied to various 

types of files that contain no pattern strings.  To test the 

processing time for scanning a file with pattern occurrences, 

we duplicated the file wmvcore.dll several times and inserted 

a pattern string in each copy at various positions.  The 

resulting files were processed by the program of each pattern 

matching scheme.  All the programs halt when a match is 

found.  The experimental results are shown in Fig. 6. 

As shown in Fig. 5, the ClamAV scheme, the banded-row 

format AC, our modified version, and our proposed scheme 

require much less storage than the AC algorithm does.  The 

memory requirements of the banded-row format AC, our 
modified version, our proposed scheme, and the ClamAV 

scheme are about 1.92%, 1.92%, 1.16%, and 0.08% of that of 

AC 2, respectively.  Note that the ClamAV scheme has the 

least memory requirement.  This is because the data structure 

of ClamAV is a trie with only two levels.  However, with 

such a trie, every time a leaf state is visited, the ClamAV 

scheme has to check all pattern strings on the associated 

linked list using sequential string comparisons.  The 

checking procedure is quite time-consuming when the linked 

list contains a large number of pattern strings.  If the 

checking fails, the current state transits from the leaf state to 
its failure state.  In other words, the checking procedure does 

not consume any input symbol, although it takes time.  

Therefore, the ClamAV scheme requires much processing 

time, as can be seen in Table I and Fig. 6.  Compared with 

the ClamAV scheme, our proposed scheme requires slightly  
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TABLE I. PROCESSING TIME COMPARISON FOR SCANNING VARIOUS TYPES OF FILES WITH NO PATTERN OCCURRENCES

Processing time (ms) 

Schemes 

AC 1 AC 2 ClamAV 
Banded-row 

format AC 

Our modified 

banded-row 

format AC 

Our proposed 

scheme 

Scanned 

files 

AC.cpp (4KB) 0.75 0.63 35 1.11 0.77 0.78 

list.txt (10KB) 1.35 1.26 41 1.72 1.39 1.39 

dosx.exe (54KB) 4.68 4.23 53 5.14 4.96 4.71 

index.htm (78KB) 5.78 5.32 58 7.03 6.41 5.79 

bootcfg.exe (186KB) 13.13 12.02 62 16.23 15.94 14.38 

wmvcore.dll (2.2MB) 172.66 153.91 285 218.43 209.85 195.62 

more memory space (1.88M bytes vs. 0.13M bytes) but 
achieves 80.6% reduction in processing time on the average 

for scanning various types of files as listed in Table I. 

As shown in the experimental results, the banded-row 

format AC, our modified version, and our proposed scheme 

have satisfactory performance on both memory requirement 

and processing time.  Among them, our proposed scheme is 

the best for both performance metrics.  In comparison with 

the other two, our proposed scheme achieves 39.7% reduction 

in memory requirement.  Note that, for the banded-row 

format AC and our modified version, every success transition 

requires memory access and computation to extract the 
updated current state from the banded-row format.  However, 

for our proposed scheme, the success transition can be easily 

done by increasing the current state number by one when a 

single-child state is visited.  Therefore, our proposed scheme 

Figure 5. Memory requirement for 5,000 pattern strings randomly selected 

from ClamAV signatures. 

requires less processing time than the banded-row format AC 
and our modified version.  According to our experimental 

results, the processing time of our proposed scheme is, on the 

average, 83.9% of that of the banded-row format AC for 

scanning the files listed in Table I. 

VII.  CONCLUSION 

In this paper, we first present an idea to improve the 

throughput performance of the banded-row format AC and 

then propose a scalable implementation of the Aho-Corasick 

pattern matching algorithm.  The performance of our 
proposed implementation is compared with those of other 

related works both theoretically and experimentally.  

Compared with the banded-row format AC, our proposed 

implementation achieves 39.7% reduction in memory 

requirement for 5,000 pattern strings randomly selected from 

ClamAV signatures and 16.1% reduction in processing time 

on the average for scanning various types of files.  

Compared with the ClamAV implementation, our proposed 

implementation requires slightly more memory space but 

 Figure 6. Processing time comparison for scanning a file with a pattern 

occurrence.
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achieves 80.6% reduction in processing time.  Based on the 

analysis and experimental results, we believe that our 

proposed scheme is more preferable than the banded-row 

format AC and the ClamAV implementation.  An interesting 

further research topic is to design an efficient pattern 

matching algorithm to handle regular expressions. 
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